SOLUTIONS

(1) Statistical inference helps us make inferences about \qquad . (E)
(2) Mistakes are unavoidable in statistical inference. Which are taken into account by the formulas used for statistical inference? (A)
(3) What does the Central Limit Theorem help us determine? (D)
(4) Why is the Student t distribution important for statistical inference? (C)
(5) How do you choose the significance level for a specific problem? (A)
(6) Suppose you draw a random sample of 100 observations from a population with mean $=20$ and variance $=25$. What is the probability that the sample mean is greater than 21 ? (B)
(7) Which statement about this probability distribution is true? (B)
(8) If one cashier is randomly selected, what is the chance that cashier made less than the average number of mistakes? (B)
(9) If 100 cashiers are randomly selected, what is the chance that the sample on average made two or more mistakes? (A)
(10) Suppose you used this formula $\bar{X} \pm z_{0.05} \frac{\sigma}{\sqrt{n}}$ and correctly computed a 90% confidence interval estimator of the population mean to be [10, 30]. Which of the following is FALSE? (D)
(11) If Z is a Standard Normal random variable, what is $P(Z>-1)$? (E)
(12) To compute the 99% confidence interval estimator of the population mean with sample size 10 , which is the correct tabular t value to use? (E)
(13) When the Central Limit Theorem applies, what is the chance that the sample mean is smaller than the population mean? (B)
(14) For a confidence interval estimator, the \qquad determines the probability it includes μ. (D)
(15) Which is a necessary condition for the sample proportion to be an unbiased estimator of the population proportion? (C)
(16) For which can you use the Standard Normal table to compute the probability that the political candidate exceeds expectations? (B)
(17) What would reduce the underlined number above (0.334)? (B)
(18) What is the total width of the 90% confidence interval estimator of the population mean? (E)

